Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 115(43): 12607-14, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21939276

RESUMO

Recently, studies have been reported in which fluorescently labeled redox proteins have been studied with a combination of spectroscopy and electrochemistry. In order to understand the effect of the dye on the protein-electrode interaction, voltammetry and surface analysis have been performed on protein films of dye-labeled and unlabeled forms of a cysteine-surface variant (L93C) and the wild type (wt) of the copper containing nitrite reductase (NiR) from Alcaligenes faecalis S6. The protein has been adsorbed onto gold electrodes modified with self-assembled monolayers (SAMs) made up of 6-mercaptohexanol (6-OH) and mixtures of various octanethiols. Electrochemical and surface-analytical techniques were utilized to explore the influence of the SAM composition on wt and L93C NiR enzyme activity and the orientation of the enzyme molecules with respect to the electrode/SAM. The unlabeled L93C NiR enzyme is only electroactive on mixed SAMs composed of positive 8-aminooctanethiol (8-NH(2)) and 8-mercaptooctanol (8-OH). No enzymatic activity is observed on SAMs consisting of pure 6-OH, 8-OH, or pure 8-NH(2). Modification of L93C NiR with the ATTO 565 dye resulted in enzymatic activity on SAMs of 6-OH, but not on SAMs of 8-OH. Quartz crystal microbalance with dissipation measurements show that well-ordered and rigid protein films (single orientation of the protein) are formed when NiR is electroactive. By contrast, electrode-NiR combinations for which no electrochemical activity is observed still have NiR adsorbed on the surfaces, but a less-structured and water-rich film is formed. For the unlabeled L93C NiR, bilayer formation is observed, suggesting that the Cys93 residue is orientated away from the surface and able to form disulfide bridges to a second layer of L93C NiR. The results indicate that interfacial electron transfer is only possible if the negatively charged surface patch surrounding the electron-entry site of NiR is directed toward the electrode. This can be achieved either by introducing positive charges in the SAM or, when the SAM does not carry a charge, by labeling the enzyme with an ATTO 565 dye, which has some hydrophobic character, close to the electron entry site of the NiR.


Assuntos
Ouro/química , Nitrito Redutases/química , Alcaligenes/enzimologia , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Corantes Fluorescentes/química , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Oxirredução , Técnicas de Microbalança de Cristal de Quartzo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
J Am Chem Soc ; 133(38): 15085-93, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21863850

RESUMO

A combined fluorescence and electrochemical method is described that is used to simultaneously monitor the type-1 copper oxidation state and the nitrite turnover rate of a nitrite reductase (NiR) from Alcaligenes faecalis S-6. The catalytic activity of NiR is measured electrochemically by exploiting a direct electron transfer to fluorescently labeled enzyme molecules immobilized on modified gold electrodes, whereas the redox state of the type-1 copper site is determined from fluorescence intensity changes caused by Förster resonance energy transfer (FRET) between a fluorophore attached to NiR and its type-1 copper site. The homotrimeric structure of the enzyme is reflected in heterogeneous interfacial electron-transfer kinetics with two monomers having a 25-fold slower kinetics than the third monomer. The intramolecular electron-transfer rate between the type-1 and type-2 copper site changes at high nitrite concentration (≥520 µM), resulting in an inhibition effect at low pH and a catalytic gain in enzyme activity at high pH. We propose that the intramolecular rate is significantly reduced in turnover conditions compared to the enzyme at rest, with an exception at low pH/nitrite conditions. This effect is attributed to slower reduction rate of type-2 copper center due to a rate-limiting protonation step of residues in the enzyme's active site, gating the intramolecular electron transfer.


Assuntos
Nitrito Redutases/metabolismo , Alcaligenes faecalis/enzimologia , Eletroquímica , Eletrodos , Transporte de Elétrons , Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Nitrito Redutases/química , Propriedades de Superfície
3.
J Pept Sci ; 15(6): 411-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19378350

RESUMO

To photomodulate the interaction of the phosphatidylinositol 3-kinase SH3 domain with a peptide ligand, a cyclic peptide (cyclic-1) with a photolabile side chain-to-side chain linker was synthesized. The conformation of cyclic-1 differs from that of the parent linear peptide, but becomes identical by UV-irradiation. Accordingly, the binding affinity of cyclic-1 to the SH3 domain increased upon conversion of the cyclic to a linear flexible structure by irradiation (K(d): 3.4 +/- 1.7 and 0.9 +/- 0.3 mM, respectively). These results confirm the usefulness of a photocleavable peptide for photocontrol of peptide-protein interactions.


Assuntos
Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Domínios de Homologia de src/fisiologia , Dicroísmo Circular , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Peptídeos Cíclicos/síntese química , Ligação Proteica/fisiologia , Ligação Proteica/efeitos da radiação , Conformação Proteica/efeitos da radiação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...